語言
Magnetron sputtering (磁控濺射台))

新聞資訊

熱門關鍵詞

聯係91xjcc下载官网

名 稱:蘇州91xjcc下载官网電子科技有限公司

電 話:0512-58987901

傳 真:0512-58987201

郵 箱:sales@tonertimes.com

地 址:江蘇省張家港經濟開發區複興路2號B06棟1樓215600PRC

網 址:www.tonertimes.com

Name: Suzhou cycas  Microelectronics Co., Ltd.

Tel.: 0512-58987901

Fax: 0512-58987201

Email: sales@tonertimes.com

Address: 1st floor,B06 building,No.2,Fuxing Road,Zhangjiagang Economic Development Zone,Jiangsu Province 215600PRC

Website: www.tonertimes.com 

全自動磁控濺射係統技術分類Technical classification of fully automatic magnetron sputtering system

您的當前位置: 首 頁 >> 新聞資訊 >> 技術知識

全自動磁控濺射係統技術分類Technical classification of fully automatic magnetron sputtering system

發布日期:2018-01-04 作者:www.tonertimes.com 點擊:

 全自動磁控濺射係統是物理氣相沉積(Physical Vapor Deposition,PVD)的一種。一般的濺射法可被用於製備金屬、半導體、絕緣體等多材料,且具有設備簡單、易於控製、鍍膜麵積大和附著力強等優點,而上世紀 70 年代發展起來的全自動磁控濺射係統法更是實現了高速、低溫、低損傷。因為是在低氣壓下進行高速濺射,必須有效地提高氣體的離化率。全自動磁控濺射台係統通過在靶陰極表麵引入磁場,利用磁場對帶電粒子的約束來提高等離子體密度以增加濺射率。

    

磁控濺射台


全自動磁控濺射係統技術分類

    直流濺射法要求靶材能夠將從離子轟擊過程中得到的正電荷傳遞給與其緊密接觸的陰極,從而該方法隻能濺射導體材料,不適於絕緣材料,因為轟擊絕緣靶材時表麵的離子電荷無法中和,這將導致靶麵電位升高,外加電壓幾乎都加在靶上,兩極間的離子加速與電離的機會將變小,甚至不能電離,導致不能連續放電甚至放電停止,濺射停止。故對於絕緣靶材或導電性很差的非金屬靶材,須用射頻濺射法(RF)。

    濺射過程中涉及到複雜的散射過程和多種能量傳遞過程:首先,入射粒子與靶材原子發生彈性碰撞,入射粒子的一部分動能會傳給靶材原子,某些靶材原子的動能超過由其周圍存在的其它原子所形成的勢壘(對於金屬是5-10eV),從而從晶格點陣中被碰撞出來,產生離位原子,並進一步和附近的原子依次反複碰撞,產生碰撞級聯。當這種碰撞級聯到達靶材表麵時,如果靠近靶材表麵的原子的動能大於表麵結合能(對於金屬是1-6eV),這些原子就會從靶材表麵脫離從而進入真空。

    濺射鍍膜就是在真空中利用荷能粒子轟擊靶表麵,使被轟擊出的粒子沉積在基片上的技術。通常,利用低壓惰性氣體輝光放電來產生入射離子。陰極靶由鍍膜材料製成,基片作為陽極,真空室中通入0.1-10Pa的氬氣或其它惰性氣體,在陰極(靶)1-3KV直流負高壓或13.56MHz的射頻電壓作用下產生輝光放電。電離出的氬離子轟擊靶表麵,使得靶原子濺出並沉積在基片上,形成薄膜。濺射方法很多,主要有二級濺射、三級或四級濺射、磁控濺射、對靶濺射、射頻濺射、偏壓濺射、非對稱交流射頻濺射、離子束濺射以及反應濺射等。

    由於被濺射原子是與具有數十電子伏特能量的正離子交換動能後飛濺出來的,因而濺射出來的原子能量高,有利於提高沉積時原子的擴散能力,提高沉積組織的致密程度,使製出的薄膜與基片具有強的附著力。

    濺射時,氣體被電離之後,氣體離子在電場作用下飛向接陰極的靶材,電子則飛向接地的壁腔和基片。這樣在低電壓和低氣壓下,產生的離子數目少,靶材濺射效率低;而在高電壓和高氣壓下,盡管可以產生較多的離子,但飛向基片的電子攜帶的能量高,容易使基片發熱甚至發生二次濺射,影響製膜質量。另外,靶材原子在飛向基片的過程中與氣體分子的碰撞幾率也大為增加,因而被散射到整個腔體,既會造成靶材浪費,又會在製備多層膜時造成各層的汙染。

    為了解決陰極濺射的缺陷,人們在20世紀70年代開發出了全自動磁控濺射技術,它有效地克服了陰極濺射速率低和電子使基片溫度升高的弱點,因而獲得了迅速發展和廣泛應用。

    其原理是:在全自動磁控濺射係統中,由於運動電子在磁場中受到洛侖茲力,它們的運動軌跡會發生彎曲甚至產生螺旋運動,其運動路徑變長,因而增加了與工作氣體分子碰撞的次數,使等離子體密度增大,從而全自動磁控濺射係統速率得到很大的提高,而且可以在較低的濺射電壓和氣壓下工作,降低薄膜汙染的傾向;另一方麵也提高了入射到襯底表麵的原子的能量,因而可以在很大程度上改善薄膜的質量。同時,經過多次碰撞而喪失能量的電子到達陽極時,已變成低能電子,從而不會使基片過熱。因此全自動磁控濺射係統法具有“高速”、“低溫”的優點。該方法的缺點是不能製備絕緣體膜,而且磁控電極中采用的不均勻磁場會使靶材產生顯著的不均勻刻蝕,導致靶材利用率低,一般僅為20%-30%。

      The fully automatic magnetron sputtering system is a kind of physical vapor deposition (PVD). The general sputtering method can be used to prepare metals, semiconductors, insulators and other multi materials, and has the advantages of simple equipment, easy control, large coating area and strong adhesion. The fully automatic magnetron sputtering system developed in the 1970s has realized high-speed, low temperature and low damage. Because of the high speed sputtering at low pressure, the ionization rate of gas must be improved effectively.

     The automatic magnetron sputtering system increases the plasma density and sputtering rate by introducing a magnetic field on the cathode surface of the target and using the constraint of the magnetic field on the charged particles. Technical classification of fully automatic magnetron sputtering system The direct current sputtering method requires that the target can transfer the positive charge from the ion bombardment process to the cathode in close contact with it, so this method can only sputtering the conductor material, which is not suitable for the insulating material, because the ion charge on the surface of the insulating target can not be neutralized when bombarding, which will lead to the potential rise of the target surface, and the applied voltage is almost added to the target, and the ion acceleration and ionization between the two poles The chance will be smaller, even can not ionize, resulting in not continuous discharge or even discharge stop, sputtering stop. Therefore, RF sputtering should be used for insulating target or non-metallic target with poor conductivity.     

    The sputtering process involves complex scattering process and many kinds of energy transfer processes. Firstly, the incident particles collide with the target atoms elastically, and part of the kinetic energy of the incident particles will be transmitted to the target atoms. The kinetic energy of some target atoms exceeds the potential barrier (5-10ev for metal) formed by other atoms around them, so they are collided out of the lattice lattice and generate separation And further, they collide with the nearby atoms repeatedly in order to produce a collision cascade. When the collision cascade reaches the target surface, if the kinetic energy of the atoms near the target surface is greater than the surface binding energy (1-6ev for metals), these atoms will separate from the target surface and enter the vacuum. 

   Sputtering coating is a technology that bombards the target surface with charged particles in vacuum to deposit the bombarded particles on the substrate. Usually, the incident ions are produced by glow discharge of low pressure inert gas. The cathode target is made of coating material, the substrate is used as anode, argon or other inert gas of 0.1-10Pa is introduced into the vacuum chamber, and glow discharge is produced under the action of 1-3KV DC negative high voltage or 13.56MHz RF voltage of the cathode (target). The ionized argon ions bombard the target surface, making the target atoms splash and deposit on the substrate, forming a thin film. There are many sputtering methods, including secondary sputtering, tertiary or quaternary sputtering, magnetron sputtering, target sputtering, RF sputtering, bias sputtering, asymmetric AC RF sputtering, ion beam sputtering and reactive sputtering. As the sputtered atoms are splashed out after exchanging kinetic energy with positive ions with tens of electron volts energy, the sputtered atoms have high energy, which is conducive to improving the diffusion ability of atoms during deposition, improving the density of deposited structure, and making the film and substrate have strong adhesion. During sputtering, after the gas is ionized, the gas ions fly to the cathode target under the action of electric field, and the electrons fly to the grounded wall cavity and substrate. In this way, under low voltage and low pressure, the number of ions produced is small, and the sputtering efficiency of the target is low; while under high voltage and high pressure, although more ions can be produced, the high energy carried by the electrons flying to the substrate is easy to heat the substrate or even cause secondary sputtering, which affects the film quality. In addition, the collision probability between the target atoms and the gas molecules increases greatly in the process of flying to the substrate, so it will be scattered to the whole cavity, which will not only cause the target waste, but also cause the pollution of each layer in the preparation of multilayer. 

    In order to solve the defects of cathode sputtering, the full-automatic magnetron sputtering technology was developed in the 1970s. It effectively overcomes the weaknesses of low cathode sputtering rate and high substrate temperature caused by electrons, so it has been rapidly developed and widely used.     

    The principle is: in the fully automatic magnetron sputtering system, because the moving electrons are subjected to Lorentz force in the magnetic field, their motion paths will bend or even spiral, and their motion paths will be longer, so that the number of collisions with the working gas molecules will be increased, the density of the plasma body will be increased, so that the speed of the fully automatic magnetron sputtering system will be greatly improved, and On the other hand, the energy of the atoms incident on the substrate surface is increased, so the quality of the films can be improved to a great extent. At the same time, the electrons that lost energy after many collisions have become low energy electrons when they reach the anode, so that the substrate will not overheat. Therefore, the automatic magnetron sputtering system has the advantages of "high speed" and "low temperature". The disadvantage of this method is that the insulator film can not be prepared, and the inhomogeneous magnetic field used in the magnetic control electrode will cause significant inhomogeneous etching of the target, resulting in low utilization rate of the target, generally only 20% - 30%.

本文網址:http://www.tonertimes.com/news/368.html

相關標簽:磁控濺射台

Z近瀏覽: